Infrastructure Options For Rural Villages in the RMWB

Craig Dobson

September, 2013

Objective	1
Recommendations	1
Infrastructure	2
Existing Infrastructure and Services	2
Proposed RMWB Network	
Potential Options	
Mesh Wi-Fi Network	5
Fibre Networks – Background	
A Fibre-fed Wi-Fi Network	
Fibre to the Premise + Wi-Fi Network	
Capital Costs	25
Mesh Wi-Fi Network	
Fibre-fed Wi-Fi Network	
Fibre to the Premise + Wi-Fi	
Conclusion	
Next Steps	
Acronyms	
Appendix	
IBI RMWB Network Designs	
Land Cover (clutter) Grids	
FTTP + Wi-Fi Network Designs	
-	

Objective

Last fall for the Sustainable Communities Working Group (SCWG), TaylorWarwick completed a planning level conceptual review of five options available to improve broadband services within Janvier¹. In this document, the estimates for the mesh wi-fi, hybrid fibre/wi-fi, and full fibre/wi-fi options are extended to include Fort Chipewyan, Anzac, Conklin, Fort MacKay, and Gregoire Lake Estates. Potential impacts of the proposed IBI fibre designs for the Regional Municipality of Wood Buffalo (RMWB or RM for short) are considered.

Recommendations

While the analyses contained herein provides a realistic and detailed assessment of the broadband infrastructure options, capabilities, and capital costs for the communities within the RMWB, as outlined in Next Steps, additional work is required prior to selecting which of the presented alternatives is the most appropriate.

¹ Dobson, C; Janvier/881 Analysis – Infrastructure and Economics; OSLI; 2012 10 09.

Infrastructure

Existing Infrastructure and Services

The rural areas of the RM receive Internet services via:

- TELUS dial-up services
- Arrow Technology Group (ATG) point-to-multipoint (PMP) fixed wireless services
- XploreNet and Galaxy Broadband Satellite Services
- TELUS, Bell, and Roger's mobility services

the specifics of which appear in the table below (thanks to $Melanie^2$ for some of the information summarized here).

		Access Services										
	Wired BB: D	SL/DOCSIS	Fi	bre	Wire	eless	Sat	ellite				
	TELUS	Shaw	Arrow Tech	RM Facilities	Arrow Tech	WiFi	XploreNet	GalaxyBB				
Janvier			Band Office +	Proposed	1							
Fort Chipewyan				Proposed			v					
Anzac				Proposed	j			Ĵ.				
	\$1.2M Upgrade			Proposed	ý –		ý.					
Fort MacKay				Proposed			Service Edge	V				
Gregoire Lake Estates								V				
	Access	Services – co	ontinued		Backhaul							
		Cellular		Fibre	Wireless							
	Rogers	TELUS	Bell	SuperNet	SuperNet	Licensed PTP	Tridon					
Janvier	3/4 G	3/4 G		↓								
Fort Chipewyan		4 G	4 G			RES*						
Anzac	V			V		V						
Conklin	3 G	3 G		√ 1		V						
Fort MacKay		4 G	4 G	POP south	into Ft. MacK							
Gregoire Lake Estates				√								
		* Regional I	Emergency Ser	vices network								

Dial-up neither meets client requirements nor the government's definition of basic Internet which, based on the CRTC's 2011 non-binding aspirational access services goal, is set at 5 Mb/s down (toward the client) and 1 Mb/s up by 2016. ATG's PMP wireless services in the area seem to be uniformly poor from a user's perspective and, given the poor business case associated with delivering these services from ATG's perspective, are not likely to be upgraded. Data via mobility services is expensive in that a 5 GB/mo mobility data plan costing about \$40/mo, for instance, is barely enough to download a single HD movie. Performance of the satellite services is currently unknown, but latency is typically an issue.

Except for the wireless SuperNet connection in Fort Chipewyan, fibre backhaul services via the Alberta SuperNet is available in each community. Other than Fort Chipewyan as well, wireless backhaul services are available from a licensed point-to-point radio network operated by the RMWB as well as from an extensive wireless network operated by Tridon. In response to client requirements, Tridon is currently looking to extend its radio network south to Conklin. Site acquisition within the RM is currently an issue as the RM waits to see what towers will be deployed via the provincial Alberta First Responder Radio Communication System (AFRRCS) program.

Proposed RMWB Network

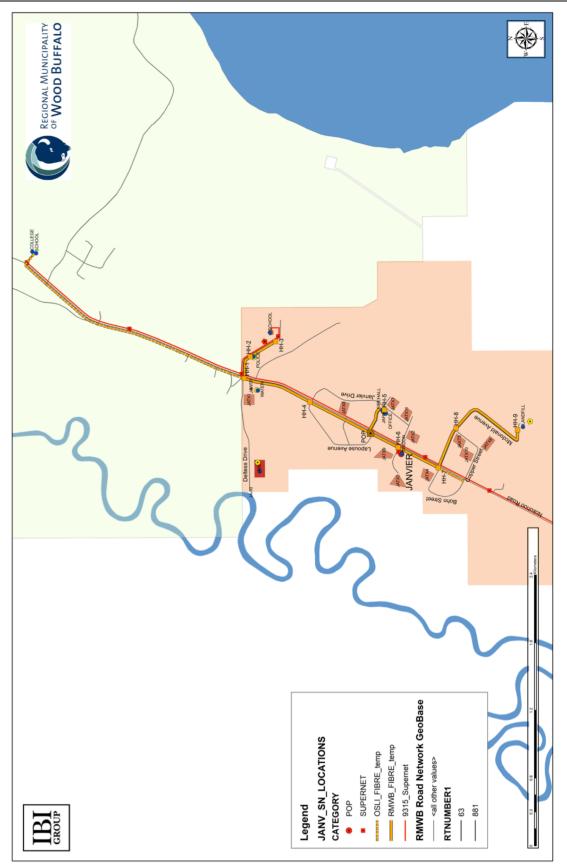
Under contract to the RM, the IBI group completed conceptual designs for a fibre network in each community to connect RM facilities. By deliberately overprovisioning the network, extra capacity was to be made available to help facilitate Internet services deployment to residential and commercial clients by third party suppliers. Two options are currently on the table. Option 1 (Op-1) involves deploying the minimal network required to connect all RM facilities in each village². Deployment options for direct buried versus trenched are presented at a high level. Though the initial plan included extra fibre that third party interests could splice into, to better enable third parties such as the SCWG to deploy their own fibre, revised versions now include either additional conduit or conduit large enough to be subducted.

Option 2 (Op-2) includes Op-1 deployment as well as sufficient additional conduit runs to accommodate pretty much the entire feeder network proposed later in this report. Whereas the savings to SCWG deployment costs under Op-1 are in the 15% range, savings increase to over 30% under Op-2. Should the IBI group obtain approval for an intercommunity backbone network that would be available for third party use, operational savings would also be realized – relative to transport costs, annual operational costs could decrease by 80%.

IBI's conceptual design for Janvier appears on the next page. Designs for the remaining four communities it considered appear in the Appendix. Red indicates SuperNet infrastructure, solid yellow shows Op-1 deployment, and the dotted yellow line indicates the proposed extension under Op-2. As there are no RM facilities in Gregoire Lake Estates, no RM fibre is planned for that area. Adopting Op-2 triples the overall capital cost to the RM.

Potential Options

As discussed in the original infrastructure report for Janvier¹, in order of increasing capability and cost, the three primary options to significantly improve services include:


- Deploying a mesh Wi-Fi network
- Deploying a fibre-fed Wi-Fi network (the 'hybrid fibre/Wi-Fi' option)
- Deploying a hybrid fibre-to-the-premise (FTTP) + Wi-Fi network

While a mesh Wi-Fi network can be deployed quickly at low cost, overall bandwidth is fundamentally limited by the 'meshing' function – in which much of the available bandwidth is used to transfer data between the wireless access points (APs) and the backbone connection [see The Mesh Penalty later in this report].

Deploying a fibre feeder network to directly interconnect the APs and the backbone network frees up this 'transfer' bandwidth and thereby significantly increases the bandwidth available to the user community. The feeder network also helps facilitate fibre connections to those requiring it and scales to a full FTTP deployment down the road. The hybrid FTTP+Wi-Fi network provides the best of both worlds, upfront.

Capital costs for each of these alternatives are presented in this report. While costs for a pure FTTP network are not presented, they can be made available on request - or estimated by subtracting the capital costs for the first from those for the third option.

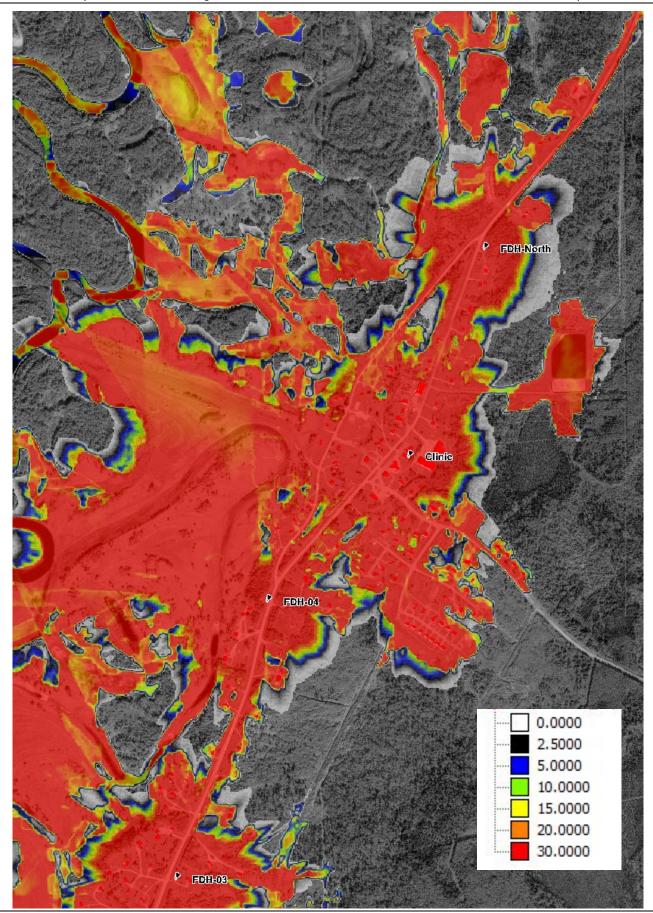
² Swanson, Melanie; RMWB Rural Community – Telecommunications Conceptual Design Report; IBI Group; Draft: 2013 05 13.

IBI Conceptual Design for Janvier

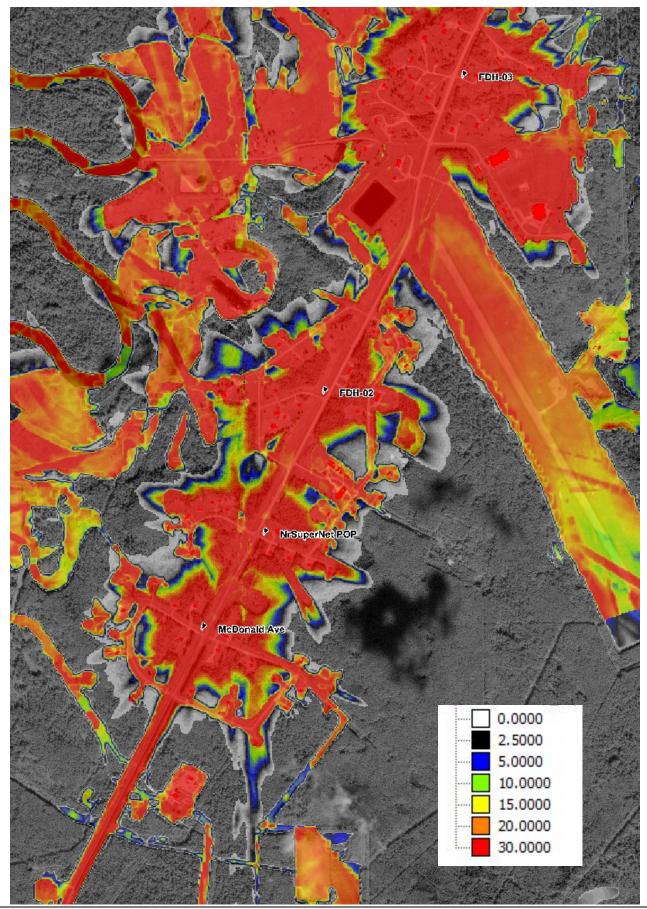
Mesh Wi-Fi Network

Unlike PMP systems which require specialized customer reception equipment that must be homed on a host tower, outdoor Wi-Fi networks offer significantly higher data rates and have the advantage that no specialized receiver equipment is required – any Wi-Fi-enabled client device such as laptops, netbooks, iPads, and so on, will do. Unlike their indoor counterparts, outdoor units are environmentally hardened to withstand cold temperatures and moisture, output ten times the power, and can be meshed or linked together to provide their own backhaul connections to the one unit that is 'hard-wired' to a backbone network such as the SuperNet.

The conceptual designs outlined below assume Motorola/Cambrium AP7181 equipment mounted on 25-30m stub towers. The units each support dual band 2.4/5.5 GHz operation based on 802.11n standards, are spec'ed to -40, and provide an aggregate capacity of 300 Mb/s. This Wi-Fi equipment is backwards compatible with earlier versions of the standard, so slower, dated client devices would still be able to connect. While the designs below are sufficient to provide reliable outdoor coverage throughout each community, additional access points (APs) will be needed in some areas if indoor coverage is required as well³. Clients remaining out of range could still obtain service from the local wireless ISP (WISP) using PMP equipment or from a satellite service.

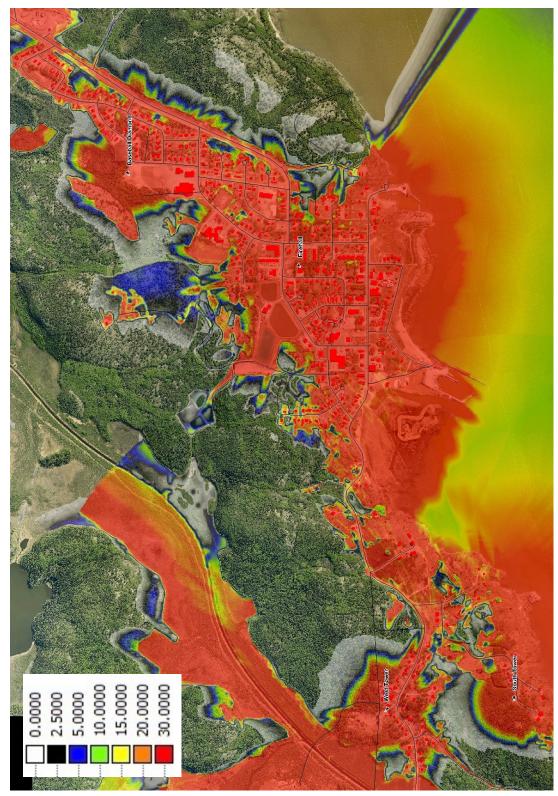

Propagation coverage estimates critically depend on topography and land cover. While digital topographic data is generally available, land (clutter) grids are not. Hence, to ensure accuracy in the conceptual wi-fi designs presented below, high resolution clutter and 3D building grids were created for each area using detailed ortho-imagery provided via the IBI group from the RMWB. The clutter maps developed appear in the Appendix.

Janvier – from the Infrastructure & Economics Report

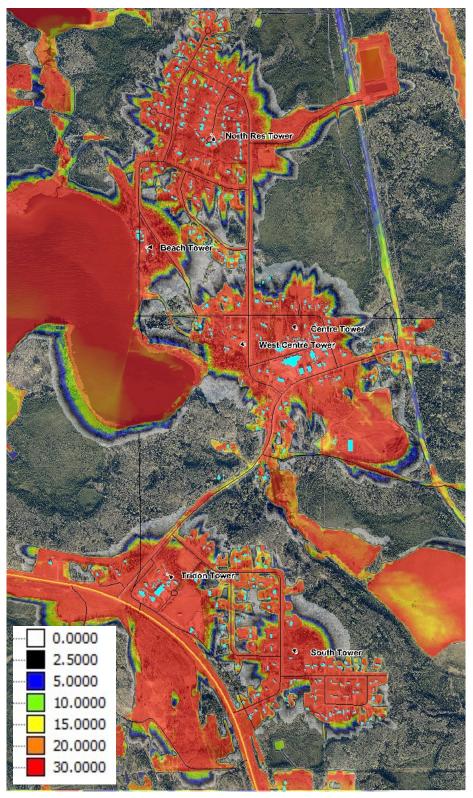

Based on a preliminary design, eight wi-fi APs would provide coverage to ~95% of the premises in Janvier. Due to the dense forest, the APs need be mounted at least 25m above ground level and costs for seven towers are included in the analysis. The analysis assumed that the remaining AP would be mounted on the existing ATG tower behind the clinic. Providing adequate signal strength for indoor coverage would require another 5 APs. The network connects to the global Internet via a fibre from the proposed tower near the SuperNet site to the SuperNet POP.

Given the AP7181 equipment, topography, and ground cover, the estimated mean download bandwidths provided by this network, in Mb/s can be seen in the two charts below. While the legends only differentiate bandwidths to 30 Mb/s, peak rates may exceed 70 Mb/s. Whether or not the full 70 Mb/s bandwidth would be available to a particular client at any point in time depends both on the amount of bandwidth currently being used for the 'mesh' function and on the number of concurrent users associated with the AP at that instant and their aggregate their bandwidth demand. To simplify deployment issues should a hybrid option be selected (discussed later in this report), the towers were colocated at potential fibre distribution hub (FDH) sites where possible. The eighth AP is located near the north end of Nokohoo Road.

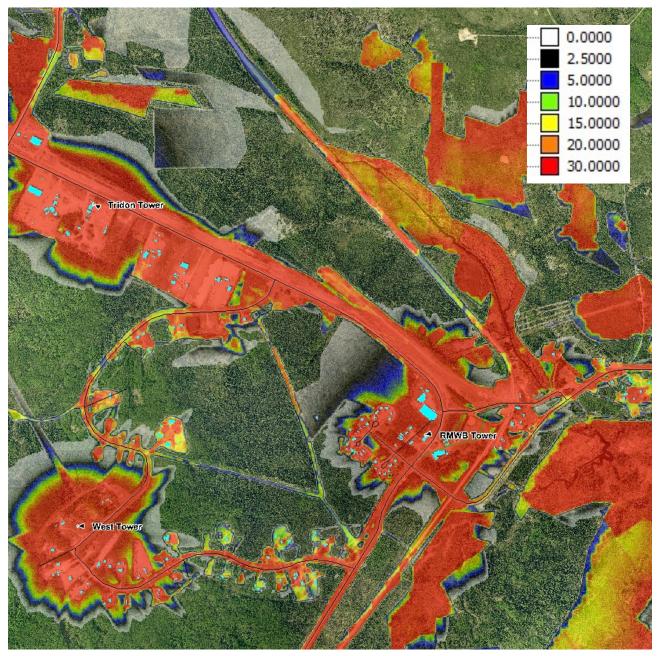
³ Even with the additional margin provided for indoor coverage, coverage within metal trailers, basements, and buildings with low-e glass will be problematic.

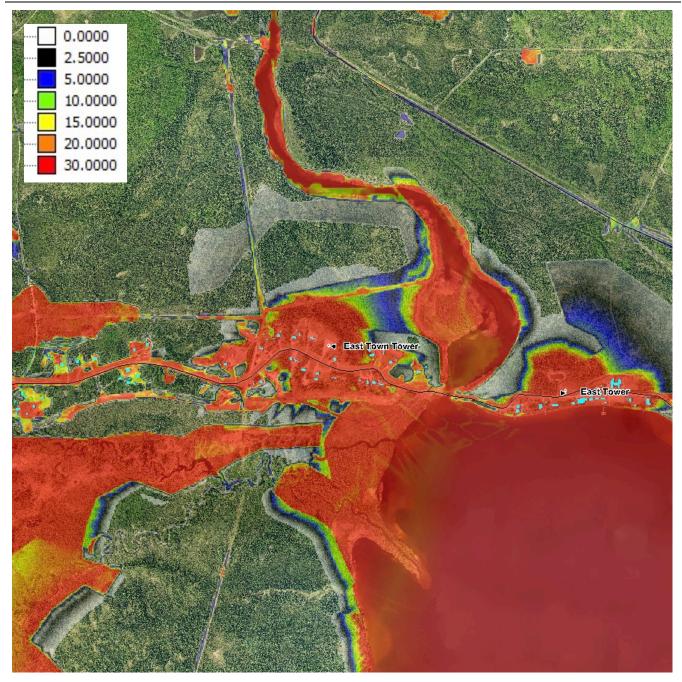

Taylor Warwick Consulting Limited © 2013

Taylor Warwick Consulting Limited © 2013

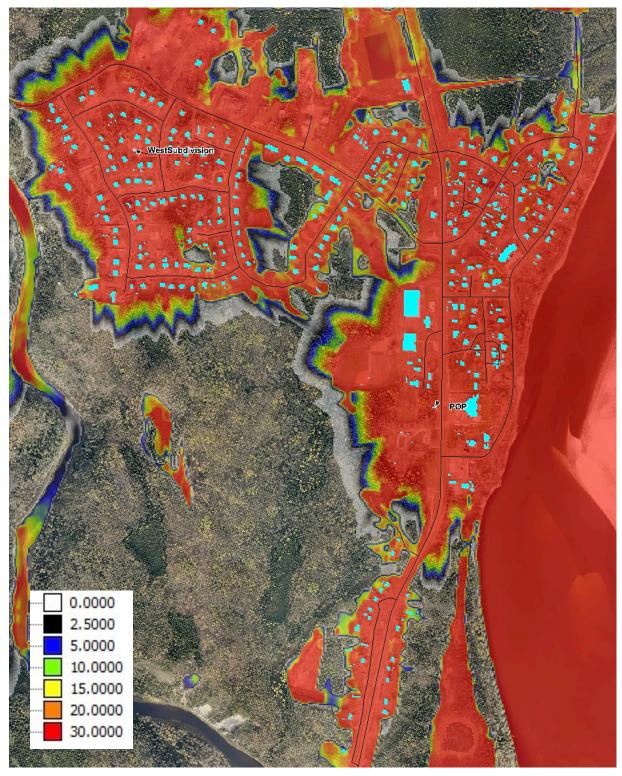

Fort Chipewyan

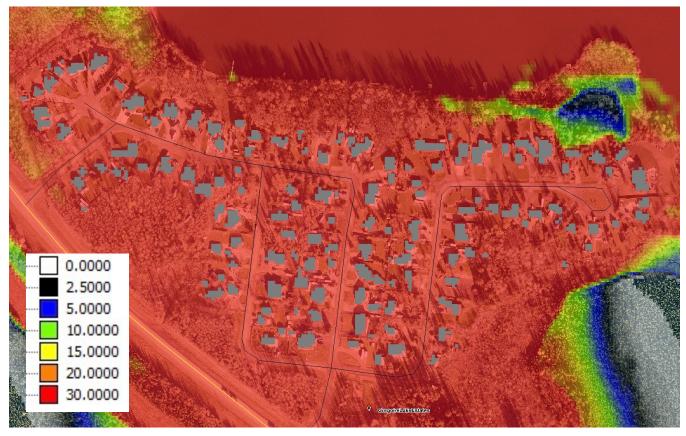
As shown in the average expected download chart below (legend is in Mb/s), based on the conceptual design, Fort Chipewyan can be reasonably serviced with four wi-fi APs. For indoor coverage throughout the town, four additional APs are needed.


Anzac


Being rather spread out, as shown in the average expected download chart below, at least six APs will be needed to reasonably provide outdoor wi-fi services throughout Anzac. For indoor coverage, three additional APs are required.

Conklin


Conklin too is spread out and even with five APs, service to some homes is spotty. Providing reasonable indoor coverage will require three additional APs. Average expected download speeds provided via the conceptual design for outdoor coverage for Conklin west appears below and that for Conklin east follows.

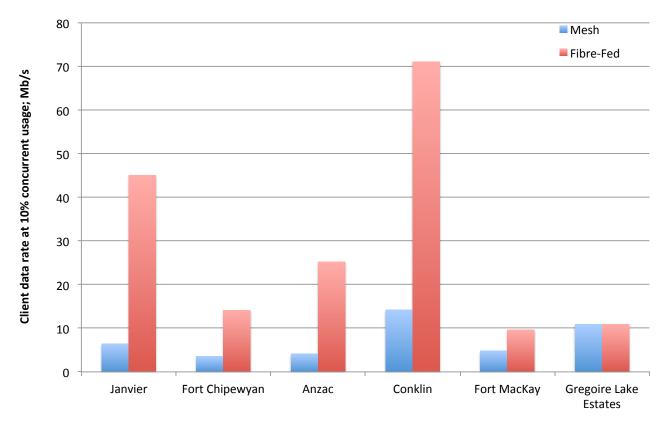

Fort MacKay

As shown in the mean expected download chart below, Fort MacKay can be well served by two Wi-Fi access points. To complete indoor coverage, two additional APs are required.

Gregoire Lake Estates

Only one Wi-Fi access point is required to service Gregoire Lake Estates. Signal strength from that access point is sufficient to provide good indoor coverage throughout the community.

The Mesh Penalty


The bandwidth shown in the above figures refers to the mean bandwidth available to each device in the area, assuming it's the only connected device and no bandwidth is required for the mesh function. The mesh function refers to ability of the APs to relay signals to and from other APs enroute to the root AP that is connected to the backhaul and gateway services. The aggregate available bandwidth at a particular AP7181 that is directly connected via say a point-to-point radio or fibre link to the backbone service is 300 Mb/s. If there are 200 devices within range of that AP and 10% of them are active, the bandwidth available to each device would be 1/20th of the aggregate. If the device is located in an area showing a mean download capability of 10 Mb/s, then they may see only about 500 kb/s.

In the conceptual design for the mesh configuration outlined for each community, only the root AP is directly connected to the backbone services and the APs' mesh functionality is used for inter-AP communication. Though mesh devices use sophisticated dynamic routing and bandwidth allocation algorithms to manage client and inter-AP connection bandwidth, on average the available client bandwidth decreases linearly as the number of APs in a mesh increases. Hence, the larger the mesh network, the less bandwidth that is available for client use.

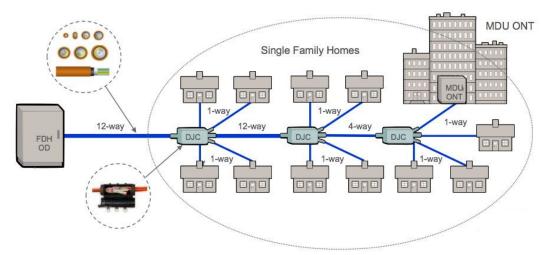
As an example, consider that providing indoor coverage in Janvier will require 12 APs. In this case, the mesh functionality will effectively reduce the available concurrent bandwidth at each AP to 300/12 = 25 Mb/s. Simplistically, as the root AP could be receiving 11 data streams of 25 Mb/s each

(totaling 275 Mb/s) from the other APs it's supporting, it'd only have 25 Mb/s left to support clients connected to it. If each AP is supporting 40 devices with 10% active client connections, then each client in a 'red' reception area may see up to a 6.25 Mb/s service.

The impact of utilizing the mesh capability for inter-AP communication is shown below. In the chart, 10% utilization by 100% of each village's population uniformly distributed throughout the coverage area are assumed to require concurrent connectivity. The higher the population and the smaller the number of APs, the less bandwidth available to the client base. As can be seen, the impact of the mesh function can be quite significant – an 85% reduction, for instance, in the Janvier example.

Depending on the requirements eventually agreed to, it may be possible deploy a larger number of less capable, less expensive APs without the need for the stub towers. While this latter option would permit more refined coverage, 'meshing' the larger number of APs may not be practical and fibre connectivity would likely be essential.

Fibre Networks – Background


In contrast to the mesh wi-fi design presented, the pure fibre option provides the ultimate in scalability together with the lowest operational costs. Due to the civil works required to deploy fibre, however, significant upfront capital is required. To estimate costs for both the fibre-fed Wi-Fi and Hybrid FTTP + Wi-Fi options in each community, a home-run fibre architecture using Ericsson's airblown fibre system was assumed.

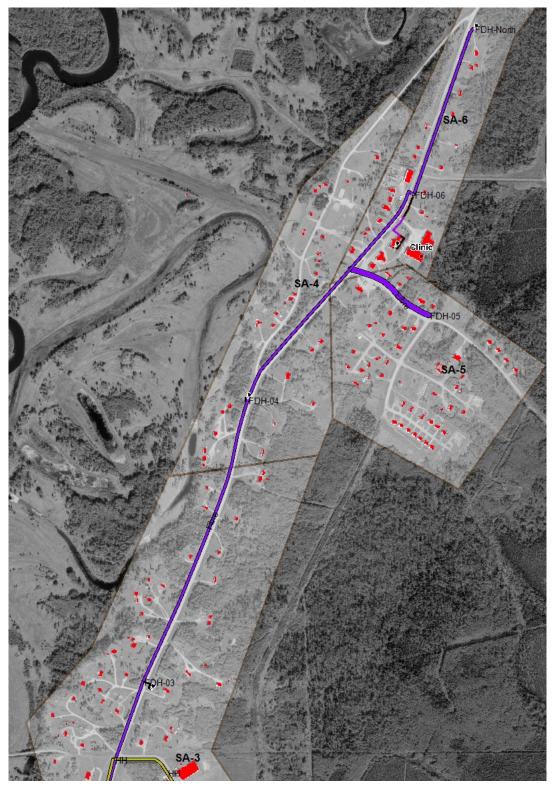
The home-run architecture is ideal as it provides a unique conduit and fibre to every home and business that orders services. As fibre can support significantly more bandwidth than current opto-electronics can provide, the system can be continually updated by simply updating the opto-electronic

components at each end of the fibre – a relatively low cost upgrade path relative to shared fibre options in which additional civil work may be required. The home-run option increases upfront costs by about 10% over shared fibre systems typically deployed by the incumbents.

Ericsson's Ribbonet air-blown fibre (ABF) system is relatively new to Canada, somewhat more finicky to deploy than traditional systems, and about 25% less expensive than systems traditionally favoured by the incumbents. As ABF systems are simpler to maintain and require less upfront capital for tools, they are more amenable to local support.

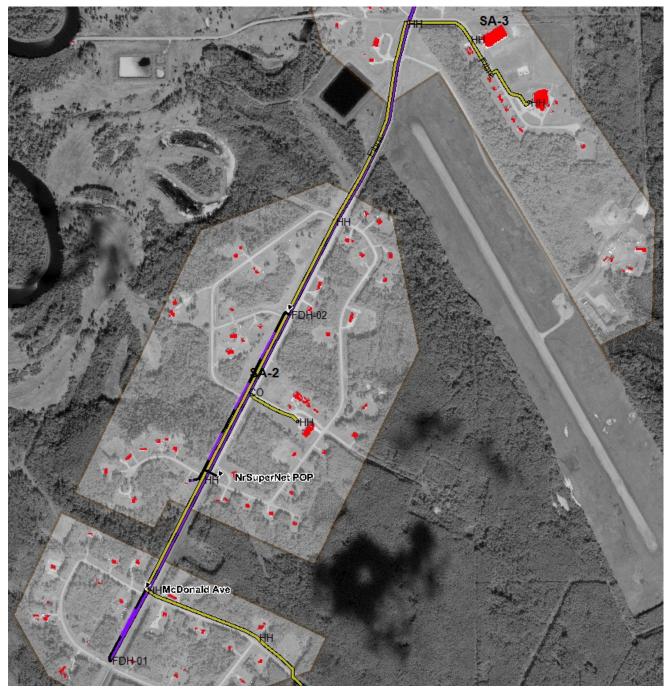
As with traditional architectures, there are three parts to an ABF-based outside plant network: feeder, distribution, and drop. The feeder network connects a set of Fibre Distribution Hubs (FDHs). Each FDH serves a distribution network which initially consists of conduit runs, via a number of branch joints, to the property lines of each premise in each FDH's Serving Area (SA).

Once service is ordered, drop conduit is placed from the property line to the premise and connected to the distribution network. Fibre is then blown from the FDH to the premise. At the FDH, the fibre is connected to a feeder fibre that runs back to the opto-electronic and routing equipment located in a local data centre or Central Office (CO). When the drop is completed, an optical network terminal (ONT) device is installed at the premise. The ONT connects the client's network or computer devices to the fibre.


A Fibre-fed Wi-Fi Network

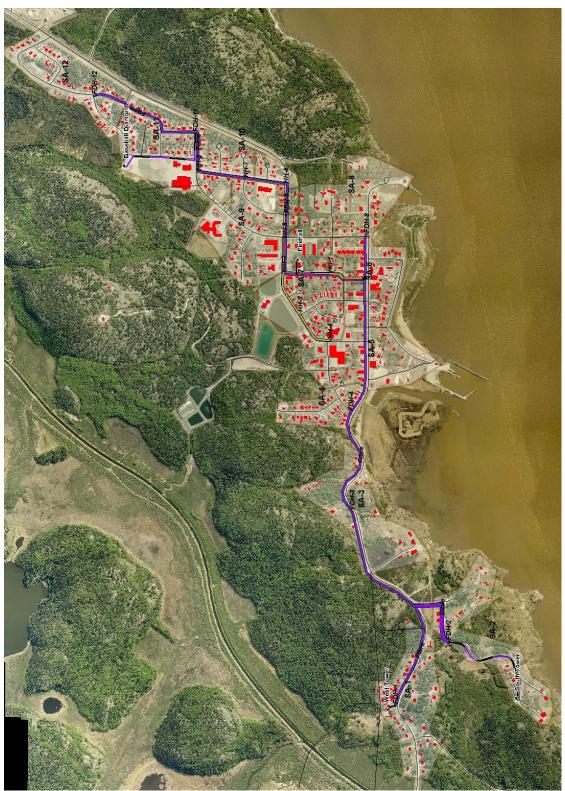
A hybrid solution that would minimize upfront costs and deployment time, while maximizing scalability via the option to go 'fibre' when and where needed, is possible by deploying the complete feeder network upfront, including an FDH in each SA of each community and then running fibre connections to each AP and the SuperNet. The feeder fibre would obviate the need for utilizing the Wi-Fi network's mesh features, free up bandwidth for subscribers, and ensure capacity for the foreseeable future. To serve commercial clients or residential clients who require the bandwidth, the distribution network could be either be deployed in just the required SAs or in all, if funds were available or demand materialized.

Janvier

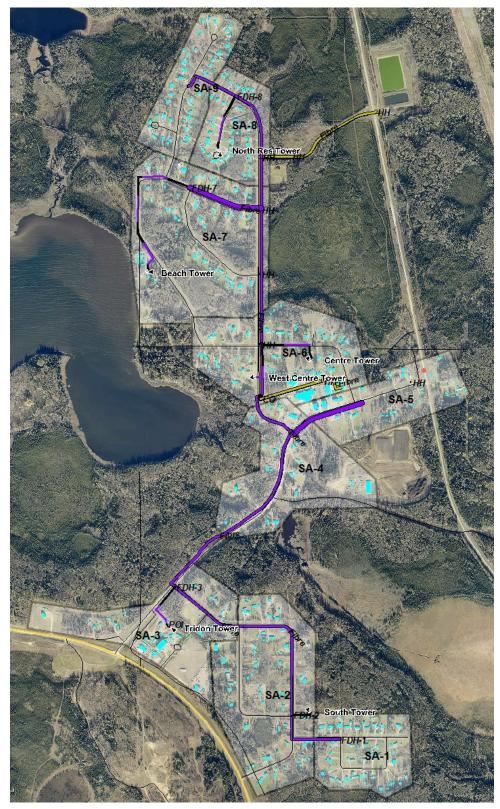

In Janvier, a traditional feeder network would be run the length of Nokohoo Road with terminations in seven FDHs or cabinets as well as in the CO site selected to host the equipment. Eight

SAs were assumed and the SA boundaries as well as the locations for the FDHs in the core Janvier area appear in the two figures below. The remaining two SAs and their FDHs are located further up Nokohoo Road. The CO would be co-located with FDH-4.

In the figures, SuperNet facilities are shown in orange, the proposed RMWB Op-1 equipment in yellow, and the facilities to be placed by the SCWG project in purple. Feeder cables are shown as purple


lines with black boundaries and feeder runs with two feeder cables (one each way) are shown by lines twice as thick. Dashed purple/black lines indicate distribution/drop cabling to the SuperNet access point and to the APs which are not quite co-located with the FDHs.

The RMWB Op-1 and the SCWG feeder runs share a trench for 1900 m; with Op-2 the complete 5777 m of feeder trenching is shared. The fibre network connects to the SuperNet at the SuperNet POP shown and from there to the global Internet. If premises north of serving area (SA) 6 could wait until the water distribution is extended up the road, significant trenching costs could be saved.


Fort Chipewyan

Fort Chipewyan will be expensive to serve as twelve SAs/FDHs are required and only 1115 m of trenching is in common with the proposed RMWB Op-1 build; 3919 m with Op-2. Given conditions in Fort Chipewyan, an aerial deployment may be necessary.

Anzac

Anzac is similarly expensive to serve as nine SAs/FDHs are required and only 1188 m of trenching is in common with the proposed RMWB Op-1 build; 4633 m with Op-2.

Conklin

Seven SAs/FDHs are required to service Conklin and 4990 m of trenching is shared with the proposed RMWB Op-1 build; 6256 m with Op-2.

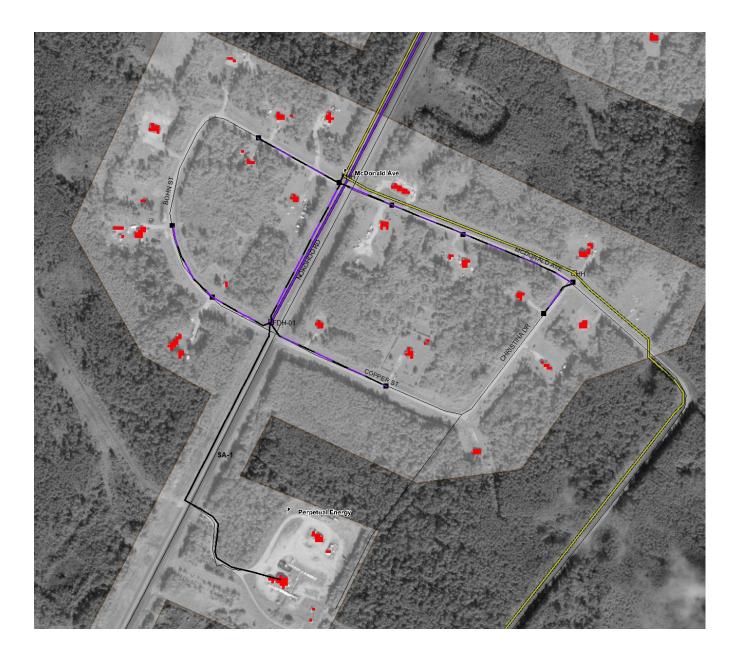
Fort MacKay

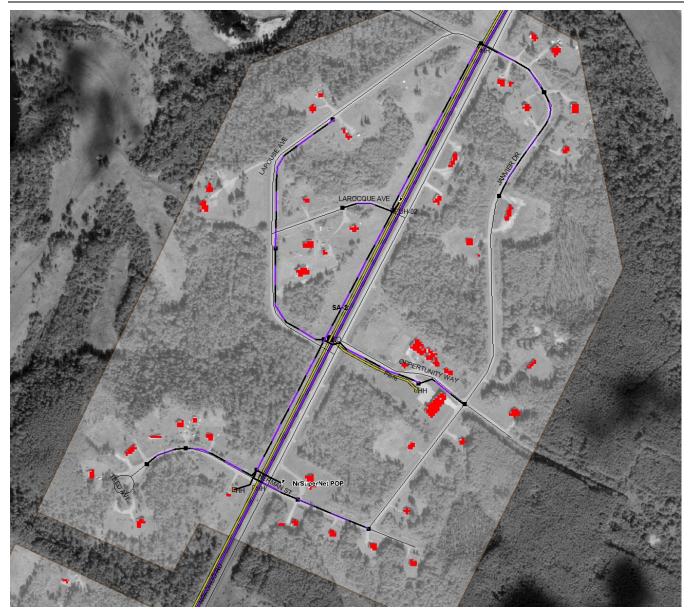
Fibre service to Fort MacKay requires six SAs/FDHs. At only 572 m for Op-1, the shared trenching in Fort MacKay is the least of all six areas considered. This increases to 1317 m with Op-2.

Gregoire Lake Estates

While no RMWB network facilities are planned for the Gregoire Lake Estates area, the area is small and only three SAs/FDHs will be required to support fibre services.

Fibre to the Premise + Wi-Fi Network


While the pure fibre option provides the ultimate in scalability together with the lowest operational costs, an FTTP network with a Wi-Fi overlay offers unprecedented flexibility from both service and client perspectives. To achieve a combined FTTP + Wi-Fi network from the fibre-fed Wi-Fi network in the previous section, the fibre distribution network is added, but drops are not. Specifically, fibre conduit is placed to the property line of every building, capped and then buried with a locator ball. Only when service to the building is ordered, is the drop conduit to the building completed and the fibre blown in. Though all drops could be provided upfront, it is significantly more expensive to do so (~\$900/drop for the conduit and fibre, installed but not lit).


With fibre available to serve indoor home and business locations, from a costing perspective, the Wi-Fi network assumed here is that required to provide outdoor coverage.

The maximum bandwidths that can be provided to each premise depends on the fibre configuration at the CO. To minimize upfront opto-electronics costs, this analysis assumes that homes requiring fibre service would initially share bandwidth on a 1:16 basis – i.e., 16 homes would share an aggregate bandwidth of 2.488 Gb/s down and 1.244 Gb/s up based on the GPON standard, yielding a minimum bandwidth per home of 156 Mb/s down and 78 Mb/s up. As demand grows, the per premise bandwidths can be scaled by reducing the split ratios to 1:8 and possibly 1:4. At that point, the service would be

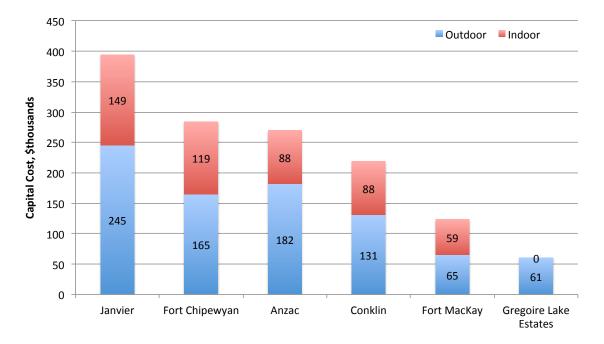
switched to Active-Ethernet which provides symmetric 1 Gb/s to each premise with no changes to the ONTs deployed.

Conceptual air-blown FTTP designs each of the six communities have been completed and the capital costs estimated. The design for Janvier requires six SAs and the results for the first two appear in the two figures below. As before, SuperNet facilities are shown in orange, the proposed RMWB Op-1 equipment in yellow, and the facilities to be placed by the SCWG project in purple. Feeder cables are shown as purple lines with black boundaries and feeder runs with two feeder cables (one each way) are shown by lines twice as thick. Dashed purple lines indicate distribution cabling and black lines indicate drops (which are shown to the SuperNet and AP sites only). The small black squares/diamonds appearing along the distribution lines are duct branch closures (DBCs) used for cable management and splitting.

Capital Costs

Mesh Wi-Fi Network

Estimated costs for the full mesh wi-fi network providing capable outdoor coverage including a connection to the SuperNet is \$849k and the breakdown appears below. Feeder to the north end of Nokohoo Road as well as the eighth AP are not included. Professional services costs for Janvier are higher as they include equipment evaluation/selection and design verification work that only needs to be done once. This evaluation work would be done in partnership with operating partners.


Indoor coverage	No		Inclue	de Distribution	No	
Deploy feeder	No		Jt Trend	h with RMWB	No	1
Complete feeder	No	R	MWB supplies	feeder trench	No]
Outdoor Mesh	Janvier	Fort Chipewyan	Anzac	Conklin	Fort MacKay	Gregroire Lk Estates
Specifications # APs required # Toworo required	7	4	6	5	2	1
# Towers required Feeder trenching, m	6 0	4	5 0	3 0	0	0
Distribution trencing, m Drop trenching, m	0	0 0	0 0	0 0	0	0
RMWB jt trenching, m	0	0	0	0	0	0
# SAs	6	10	6	6	3	1
Professional Services Equipment Room Passive OSP	39,800 0	12,600 0	15,600 0	13,200 0	8,400 0	7,200 0
WiFi Network SuperNet Connection	5.895	17,729	4,237	4,237	4.237	7,088
Towers Fibre network	107,220	71,480	91,137	54,682	18,227	18,227
Mobilization and Feeder	0	0	0	0	0	0
Distribution Drops	0 809	0 809	0 826	0 826	0 826	0 826
Electronics WiFi	40 750	25 000	20 542	07.004	10.020	E 440
Opto-electronics	43,750 7,040	25,000 7,040	32,513 6,174	27,094 6,174	10,838 6,174	5,419 6,174
Concentration and Routing Client Installations	8,925 0	8,925 0	7,738 0	7,738 0	7,738 0	7,738 0
Total, with contingency	245,455	165,122	181,959	131,044	64,906	60,573

The \$245k estimated capital cost to deploy the mesh wi-fi network in Janvier is less than the costs estimated in the original review last October as the 8th AP is not included¹ here.

To provide sufficient signal strength to enable reasonable indoor coverage, additional APs are required and estimated costs for this appear below. Compared to providing good outdoor coverage, costs increase by 159% or \$502k to \$1.35M.

Indoor coverage Deploy feeder Complete feeder	Yes No No	R	Jt Trend	de Distribution ch with RMWB s feeder trench	No No No		
Complete leedel	110		anno Supplies			1	
Indoor Coverage	Janvier	Fort Chipewyan	Anzac	Conklin	Fort MacKay	Gregroire Lk Estates	
Specifications							
# APs required	12	8	9	8	4	1	
# Towers required	11	8	8	6	3	1	
Feeder trenching, m	0	0	0	0	0	0	
Distribution trencing, m	0	0	0	0	0	0	
Drop trenching, m	0	0	0	0	0	0	
RMWB it trenching, m	0	0	0	0	0	0	
# SAs	6	10	6	6	3	1	
Professional Services	48,800	19,800	21,000	18,600	12,000	7,200	
Equipment Room	40,000 0	19,600	21,000	18,600	12,000	7,200	
Passive OSP	0	0	0	0	0	0	
WiFi Network							
	5.895	47 700	4.237	4.237	4.237	7.088	
SuperNet Connection Towers	- ,	17,729	, -	, -	, -	,	
	196,570	142,960	145,819	109,364	54,682	18,227	
Fibre network	0	0	0	0			
Mobilization and Feeder	0	0	0	0	0	0	
Distribution	0	0	0	0	0	0	
Drops	809	809	826	826	826	826	
Electronics	75 000	50.000	40 700	40.050	04 075		
WiFi	75,000	50,000	48,769	43,350	21,675	5,419	
Opto-electronics	7,040	7,040	6,174	6,174	6,174	6,174	
Concentration and Routing	8,925	8,925	7,738	7,738	7,738	7,738	
Client Installations	0	0	0	0	0	0	
Total, with contingency	394,495	284,354	269,748	218,833	123,432	60,573	15%
					Total:	1,351,435	
Delta - from outdoor	149,040	119,232	87,789	87,789	58,526	0	
		· · · · ·	· · · · ·		Total:	502,377	

Comparative costs for the deployment of the mesh wi-fi option for each village appear in the chart below. The incremental cost to provide indoor coverage appears in red.

Fibre-fed Wi-Fi Network

Estimated costs to complete the feeder network into each service area and provide a fibre connection to the SuperNet and each AP required for indoor coverage appear below. At an estimated cost of \$4.28M, costs from the mesh deployment with indoor coverage increase by \$2.9M.

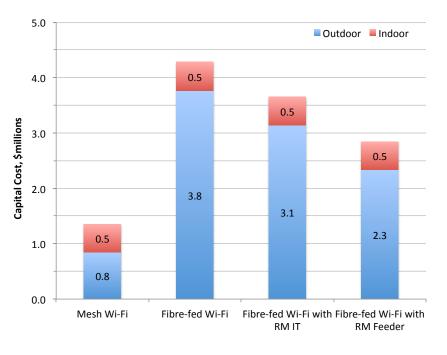
Indoor coverage	Yes			de Distribution	No]	
Deploy feeder	Yes			h with RMWB			
Complete feeder	Yes	R	MWB supplies	feeder trench	No		
Complete Feeder	Janvier	Fort Chipewyan	Anzac	Conklin	Fort MacKay	Gregroire Lk Estates	
Specifications							
# APs required	12	8	9	8	4	1	
# Towers required	11	8	8	6	3	1	
Feeder trenching, m	5,446	4,333	5,285	7,034	2,348	607	
Distribution trencing, m	0	0	0	0	0	0	
Drop trenching, m	526	380	590	448	87	30	
RMWB jt trenching, m	0	0	0	0	0	0	
# SAs	6	12	9	7	6	3	
Professional Services Equipment Room	61,122 15,680	31,903 15,680	33,814 15,680	32,890 15,680	21,007 15,680	13,733 15,680	
Passive OSP WiFi Network	15,080	15,000	15,000	15,080	15,080	15,060	
SuperNet Connection	5,024	34,334	55,559	41,163	12.724	5.710	
Towers Fibre network	196,570	142,960	145,819	109,364	54,682	18,227	
Mobilization and Feeder	432,505	419,906	460,808	545,671	241,898	99,670	
Distribution	0	0	0	0	0	0	
Drops	14,998	10,681	15,266	12,172	3,699	1,385	
Electronics	,	,	,		ĺ	, í	
WiFi	75,000	50,000	48,769	43,350	21,675	5,419	
Opto-electronics	19,129	10,727	9,861	9,400	7,557	6,174	
Concentration and Routing	8,925	8,925	7,738	7,738	7,738	7,738	
Client Installations	0	0	0	0	0		
Total, with contingency	953,294	833,883	912,312	940,043	444,660	199,798	15%
					Total:	4,283,990	
Assumes additional APs f Delta - addiing feeder	or indoor covera 558,799	ge lie along ou 549,530	tdoor feeder ro 642,564	oute 721,210	321,228	139,225	
	555,799	5-5,550	072,004	121,210	Total:	2,932,555	

Should coordination with the RMWB Op-1 deployment remove the cost of the trenching along joint feeder routes as well as eliminate the costs associated with establishing an equipment room, for the fibre-fed wi-fi deployment with indoor coverage scenario, the capital cost to the SCWG would reduce to \$3.66M as shown in the first table on the next page. The overall savings to the CCTT project would be \$628k, while increases in cost to the RMWB would be minimal.

On the other hand, if the RMWB were to undertake the deployment of conduit along the whole feeder router proposed here-in - Op-2, cost reductions to the SCWG project would be an additional \$811k. The cost breakdown appears in the second table on the next page.

Indoor coverage	Yes		Includ	le Distribution	No	1	
Deploy feeder	Yes		Jt Trenc	h with RMWB	Yes		
Complete feeder	Yes	R	MWB supplies	feeder trench	No	1	
Fibre-fed, Option (1)	Janvier	Fort Chipewyan	Anzac	Conklin	Fort MacKay	Gregroire Lk Estates	
Specifications							
# APs required	12	8	9	8	4	1	
# Towers required	11	8	8	6	3	1	
Feeder trenching, m	3,547	3.218	4.097	2,044	1.776	607	
Distribution trencing, m	0	0	0	0	0	0	
Drop trenching, m	526	380	590	448	87	30	
RMWB it trenching, m	1,899	1,115	1,188	4,990	425	0	
# SAs	6	12	9	7	6	3	
				~~~~~		10 - 00	
Professional Services	59,641	31,033	32,869	28,920	20,552	13,733	
Equipment Room	0	0	0	0	0	0	
Passive OSP							
WiFi Network							
SuperNet Connection	5,024	34,334	55,559	41,163	12,724	-, -	
Towers	196,570	142,960	145,819	109,364	54,682	18,227	
Fibre network							
Mobilization and Feeder	347,333	369,911	406,482	317,389	215,726	99,670	
Distribution	0	0	0	0	0	0	
Drops	14,998	10,681	15,266	12,172	3,699	1,385	
Electronics							
WiFi	75,000	50,000	48,769	43,350	21,675	5,419	
Opto-electronics	19,129	10,727	9,861	9,400	7,557	6,174	
Concentration and Routing	8,925	8,925	7,738	7,738	7,738	7,738	
Client Installations	0	0	0	0	0	0	
Total, with contingency	835,612	757,357	830,718	654,922	396,006	181,766	15%
					Total:	3,656,381	
Delta - from no RMWB trenchine	(117,682)	(76,527)	(81,593)	(285,121)	(48,654)	(18,032)	
	( )/	x -//	x- /- /-/	( , <del>-</del> ,	Total:	(627 609)	

Total: (627,609)


Indoor coverage	Yes	Include Distribution	No
Deploy feeder	Yes	Jt Trench with RMWB	Yes
Complete feeder	Yes	RMWB supplies feeder trench	Yes

Fibre-feed, Option (2)	Janvier	Fort Chipewyan	Anzac	Conklin	Fort MacKay	Gregroire Lk Estates
Specifications						
# APs required	12	8	9	8	4	1
# Towers required	11	8	8	6	3	1
Feeder trenching, m	0	0	0	0	0	0
Distribution trencing, m	0	0	0	0	0	0
Drop trenching, m	526	380	590	448	87	30
RMWB it trenching, m	1,899	1,115	1,188	4,990	425	0
# SAs	6	12	9	7	6	3
Professional Services	56,874	28,523	29,610	27,294	19,139	13,250
Equipment Room	00,074	20,020	23,010	27,234	13,133	10,200
Passive OSP	0	U	0	0	0	l v
WiFi Network						
SuperNet Connection	5,024	34,334	55,559	41,163	12,724	5,710
Towers	196,570	142.960	145,819	109,364	54.682	18,227
Fibre network	100,070	142,000	140,010	100,004	04,002	10,221
Mobilization and Feeder	188,265	225,564	219,054	223,881	134,465	71,900
Distribution	100,200	220,004	210,004	220,001	104,400	0
Drops	14,998	10,681	15,266	12,172	3,699	1,385
Electronics	,		10,200	,	0,000	.,
WiFi	75,000	50,000	48,769	43,350	21,675	5,419
Opto-electronics	19,129	10,727	9,861	9,400	,	6,174
Concentration and Routing	8,925	8,925	7,738	7,738	,	7,738
Client Installations	0	0	0	0	0	0
Total, with contingency	649,502	588,471	611,427	545,517	300,932	149,275
	,	,	,	,	Total:	2,845,123

Assumes additional APs for indoor coverage lie along outdoor feeder route

Delta - over IT feeder only	(186,110)	(168,886)	(219,291)	(109,405)	(95,075)	(32,491)
					Total:	(811,257)

The impact of potential synergy with the RMWB build for the each option appears below. Whereas the joint trenching arrangement reduces costs to the SCWG project some 11%, should the RM deploy conduit throughout the proposed feeder network, costs would decrease by 34%.



### Fibre to the Premise + Wi-Fi

Deploying the distribution network in addition to the feeder network discussed above would provide the rural residents of the RM with superb connectivity, whether indoor or outdoor, mobile or fixed, and whether requiring small or large amounts of bandwidth. The overall costs for the FTTP network with outdoor Wi-Fi coverage are estimated in the table below at \$5.7M – an increase of \$1.4M over the fibre-fed wi-fi network with indoor coverage presented in the last section. With the option, conduit would be deployed to the property lines of every residence and business in each village. Once service is ordered, the conduit run to the building would be completed, fibre blown in, and opto-electronics and customer premise equipment added. Drop installations with fibre would cost \$1400 per house-hold and home installation costs plus equipment adds another \$250.

Should the RM elect to deploy conduit along the entire feeder route, the overall cost to the SCWG would decrease by \$1.55M.

#### Infrastructure Options for Rural Villages within the RMWB

Indoor coverage	No		Inclue	de Distribution	Yes		
Deploy feeder	Yes		Jt Trend	No			
Complete feeder	Yes	R	MWB supplies	No			
		Fort				Gregroire Lk	
	Janvier	Chipewyan	Anzac	Conklin	Fort MacKay	Estates	
Specifications							
# APs required	7	4	6	5	2	1	
# Towers required	6	4	5	3	1	1	
Feeder trenching, m	5,446	4,333	5,285	7,034	2,348	607	
Distribution trencing, m	7,015	6,208	6,260	3,004	4,892	922	
Drop trenching, m	245	215	418	305	68	55	
RMWB it trenching, m	0	0	0	0	0	0	
# SAs	6	12	9	7	6	3	
Professional Services	50.050	24.024	24.002	20.050	22.252	14.000	
	58,653	31,224	34,902	30,659	22,352	14,836	
Equipment Room Passive OSP	17,330	17,330	17,330	17,330	17,330	17,330	
WiFi Network	5 004	1 1 1 0	4.004	4.440	4.074	5 740	
SuperNet Connection	5,024	4,148	4,061	4,416	4,274	5,710	
Towers	107,220	71,480	91,137	54,682	18,227	18,227	
Fibre network							
Mobilization and Feeder	432,505	419,906	460,808	545,671	241,898	99,670	
Distribution	343,381	333,729	332,707	164,749	254,727	52,151	
Drops	32,782	42,290	43,393	17,497	30,689	11,266	
Electronics							
WiFi	43,750	25,000	32,513	27,094	10,838	5,419	
Opto-electronics	44,027	43,916	37,151	19,532	28,320	17,689	
Concentration and Routing	8,925	8,925	7,738	7,738	7,738	7,738	
Client Installations	5,735	7,827	6,131	1,842	5,312	1,842	
Total, with contingency	1,264,232	1,156,643	1,228,052	1,024,893		289,661	15%
					Total:	5,701,441	
Delta - from full feeder only	310,938	322,760	315,741	84,849	293,301	89,863	with indoor
					Total:	1,417,452	covera

Indoor coverage Deploy feeder Complete feeder	Yes		Inclu Jt Trend MWB supplies	Yes		
	Janvier	Fort Chipewyan	Anzac	Conklin	Fort MacKay	Gregroire Lk Estates
Specifications						
# APs required	7	4	6	5	2	1
# Towers required	6	4	5	3	1	1
Feeder trenching, m	0	0	0	0	0	0
Distribution trencing, m	6,278	5,862	5,760	2,465	4,675	922
Drop tropphing m	245	215	110	205	60	55

Feeder trenching, m	0	0	0	0	0	0	
Distribution trencing, m	6,278	5,862	5,760	2,465	4,675	922	
Drop trenching, m	245	215	418	305	68	55	
RMWB jt trenching, m	1,899	1,115	1,188	4,990	425	0	
# SAs	6	12	9	7	6	3	
Drafagaianal Caniaga	52.002	07 007	20,202	04 700	20.254	14.050	
Professional Services	53,963	27,637	30,392	24,733	20,351	14,353	
Equipment Room	0	0	0	0	0	0	
Passive OSP							
WiFi Network						/ 0	
SuperNet Connection	5,024	4,148	4,061	4,416	4,274	5,710	
Towers	107,220	71,480	91,137	54,682	18,227	18,227	
Fibre network							
Mobilization and Feeder	188,265	225,564	219,054	223,881	134,465	71,900	
Distribution	317,952	321,781	315,117	145,772	247,093	52,151	
Drops	32,782	42,290	43,393	17,497	30,689	11,266	
Electronics							
WiFi	43,750	25,000	32,513	27,094	10,838	5,419	
Opto-electronics	44,027	43,916	37,151	19,532	28,320	17,689	
Concentration and Routing	8,925	8,925	7,738	7,738	7,738	7,738	
Client Installations	5,735	7,827	6,131	1,842	5,312	1,842	
Total, with contingency	928,790	895,353	904,690	606,265	583,403	237,240	15%
					Total:	4,155,742	
Delta - from no RMWB assistand	(335,442)	(261,289)	(323,363)	(418,627)	(154,558)	(52,421)	
	()	( : .,====)	(1997)	( -, /	( : .,===)	(1-) /	

6.0 Outdoor Indoor 0.3 5.0 0.6 4.0 0.5 0.3 Capital Cost, \$millions 0.5 3.0 5.4 0.5 4.7 2.0 3.9 3.8 3.1 2.3 0.5 1.0 0.8 0.0 Fibre-fed Wi-Fi Fibre-fed Wi-Fi Fibre-fed Wi-Fi FTTP + Outdoor FTTP + Outdoor FTTP + Outdoor Mesh Wi-Fi with RM IT with RM Feeder Wi-Fi Wi-Fi with RM Wi-Fi with RM IT Feeder

An overall comparison of the costs associated with each of the options presented appears in the chart below.

# Conclusion

A mesh wi-fi network could be deployed across all six communities for a capital cost of \$0.849M. Improving coverage to enable indoor coverage increases this estimate to \$1.35M. Linking the APs via a fibre feeder network that would support full FTTH deployment down the road increases the cost to \$3.85M for the outdoor option and to \$4.28M with indoor coverage. Coordination with the proposed RMWB deployment could reduce the overall capital requirements by \$628k with joint trenching and \$1.44M should the RM deploy feeder conduit throughout each community. Capital costs to deploy a FTTP network with an outdoor Wi-Fi overlay to the six communities would cost \$5.7M with no support and \$4.16M if the RM provided the feeder conduit.

## **Next Steps**

While the analyses contained herein provide realistic and detailed assessments of the infrastructure options, capabilities, and capital costs to provide capable broadband services to communities within the RMWB, additional work is required to inform the selection of the most appropriate.

• *Operations and sustainability:* the capital models that underlay the results presented above are part of a larger model which includes revenue and operational projections as well as a cashflow analysis sheet that together link to an overall economic evaluation module. Budget-level quotations for key operational parameters have been requested from potential

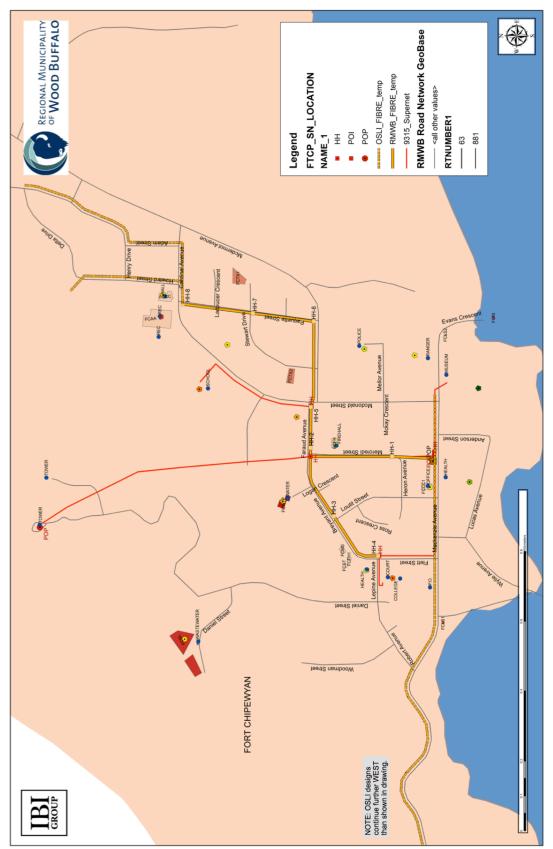
operational partners and once these are received, an economic assessment of the alternates will be completed.

- *Benefits assessment:* as the major justification for the deployment of more capable infrastructure result from the positive externalities that will accrue to these communities and the region, they are 'off-balance sheet' items that are not captured in traditional operational assessments. A 'Benefits Assessment' is underway to quantify these items.
- *Pilot network:* establishing operations within the rural RMWB presents some unique challenges so prior to full scale deployment, a pilot network is required. With a small pilot network in Janvier, it will be possible to work through implementation issues, verify assumptions, evaluation wi-fi equipment and coverage estimates, establish and 'test' relationships with potential operational partners, stimulate demand and relationships within the community, and garner interest for and implement on a small scale applications key to realizing off-balance sheet benefits.
- *Implementation plan:* the conceptual level designs presented herein are for planning and discussion purposes only. While based on detailed ortho-imagery and sound design principles, once the results of the Pilot network have been obtained and a decision to proceed is made, site visits and other work will be needed to update and finalize the designs (and costs) for implementation.

## Acronyms

ABF	air blown fibre
AP	access point
ATG	Arrow Technology Group (formerly SIS)
CCTT	Cultural Connections Through Technology
CO	central office, a more traditional name for what now is basically a data centre
CRTC	Canadian Radio-television Telecommunications Commission
DJC	duct joint closure
FDH	fibre distribution hub
FTTP	fibre-to-the-premise
GB	giga (billion) bytes, where a byte equals 8 bits
HD	high definition
ISP	Internet service provider
Mb/s	mega (millions of) bits per second
о-е	opto-electronics
OFDF	optical fibe distribution frame
ONT	optical network terminal
Op-1	Option 1 RMWB deployment in which the RM deploys extra conduit capacity along the routes required to connect RM facilities in each community
Op-2	Option 2 RMWB deployment in which the RM, in addition to Op-1, deploys conduit along complete feeder network proposed here-in.
OSLI	Oil Sands Leadership Initiative
PMP	point to multipoint
POP	point of presence

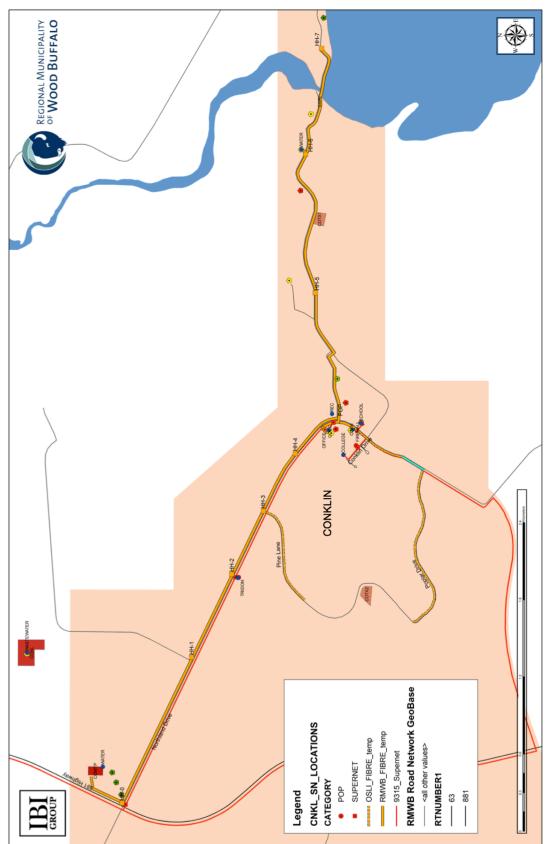
RM, RMWB	Regional Municipality of Wood Buffalo
SA	service area
SCWG	Sustainable Communities Working Group
Wi-Fi	wireless-fidelity. In this report, refers to a wireless distribution system based on the
	IEEE 802.11n standard. The standard supports data rates up to 300 Mb/s and is
	backwards compatible with earlier versions.
WISP	Wireless ISP


## Appendix

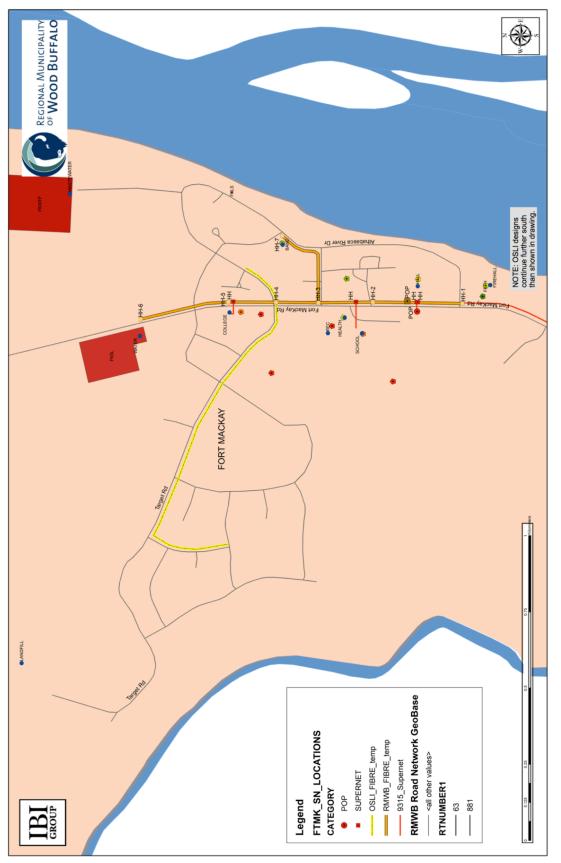
### IBI RMWB Network Designs

#### Janvier

Presented within the body of the report.


#### Fort Chipewyan




#### Anzac



### Conklin



### Fort MacKay



# Land Cover (clutter) Grids

### Janvier



## Fort Chipewyan



#### Anzac



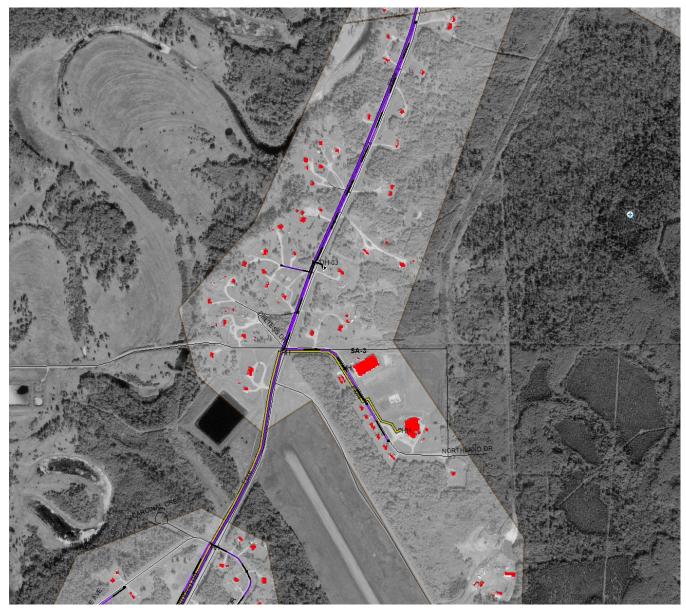
## Conklin



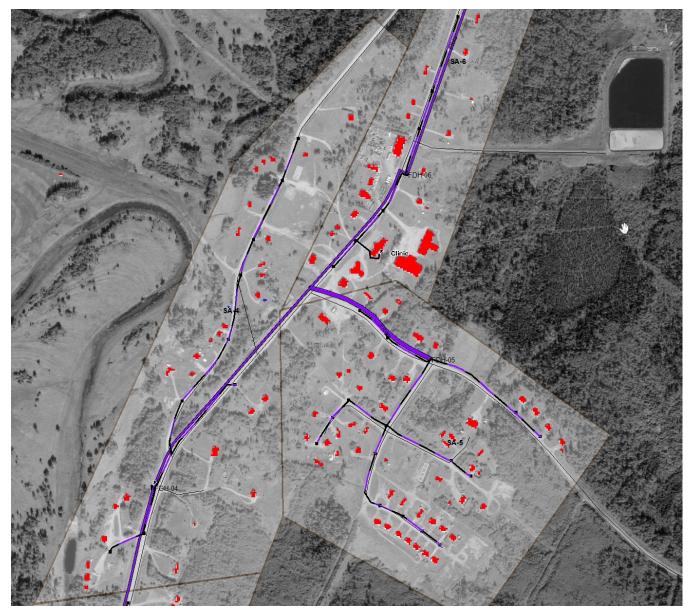
## Fort MacKay

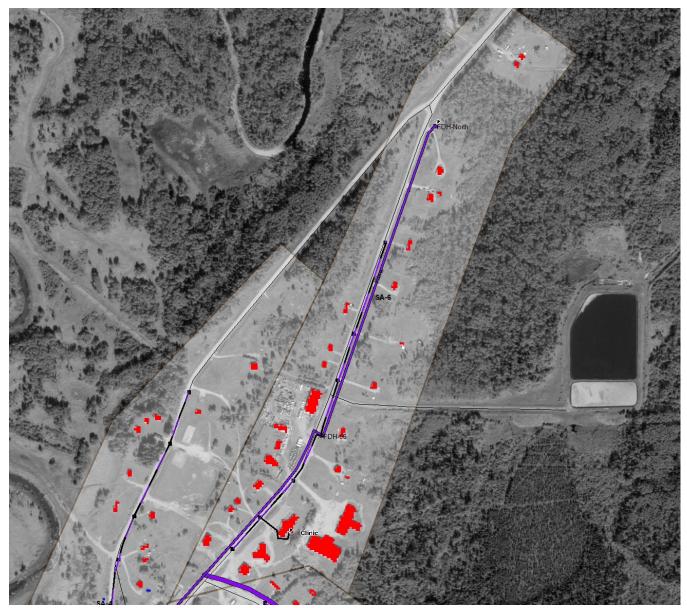


### Gregoire Lake Estates



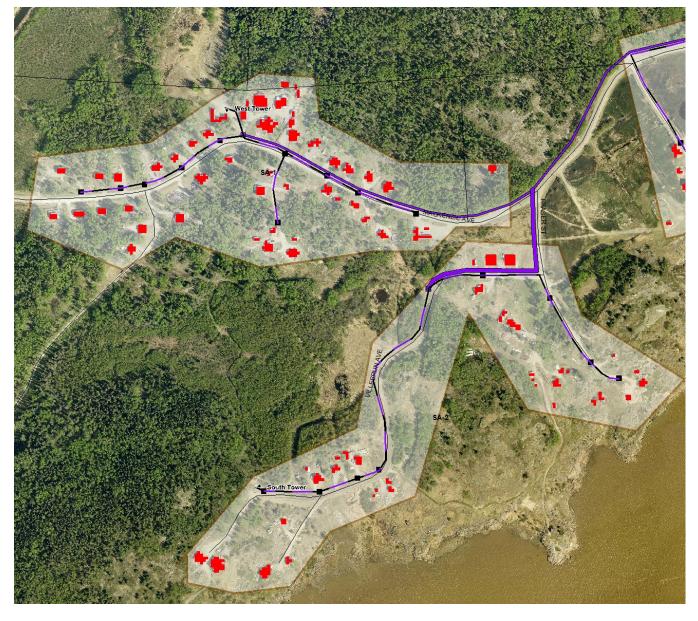

# FTTP + Wi-Fi Network Designs


### Janvier

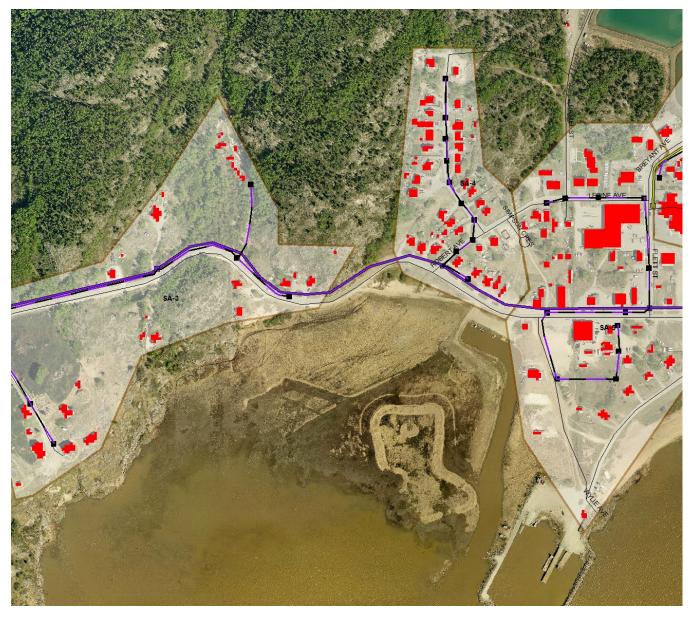

#### SA-1 & 2

See FTTP/Wi-Fi Section in the body of the report.

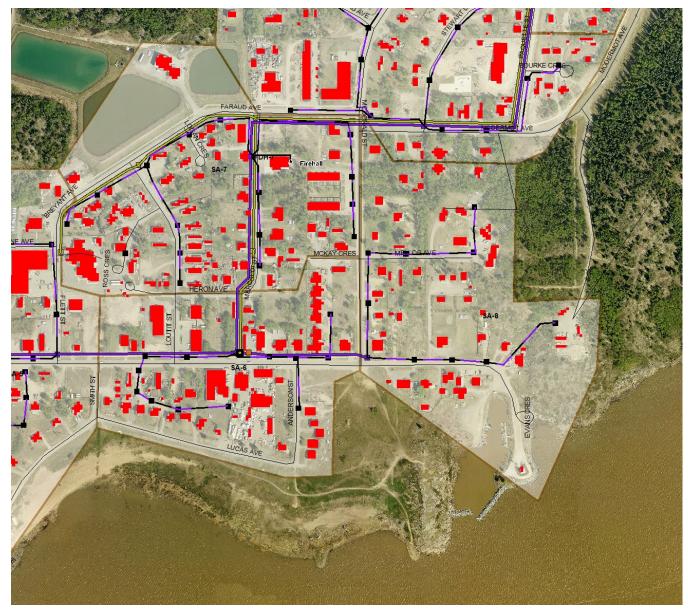



#### SA-4 & 5

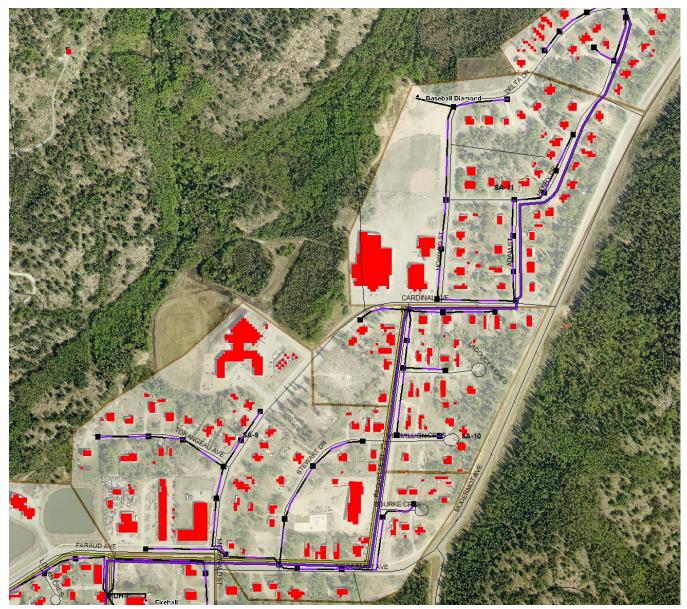


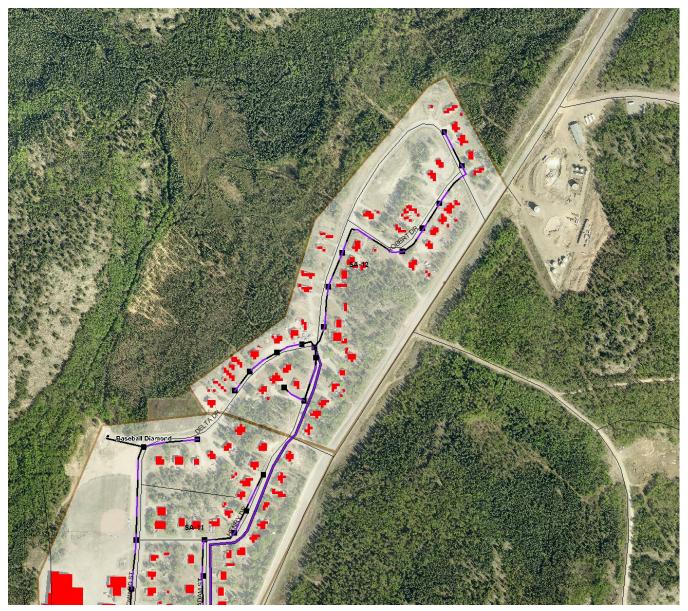



## Fort Chipewyan


### SA-1 & 2




#### SA-3, 4, & 5



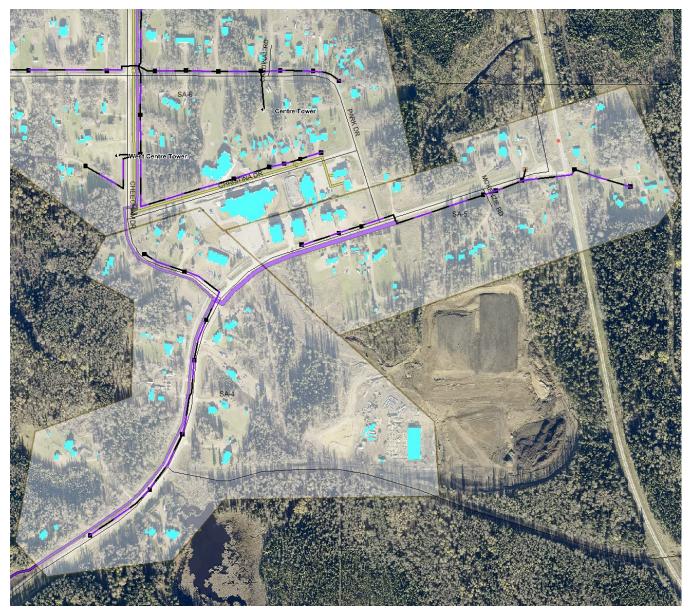

## SA-6, 7, & 8

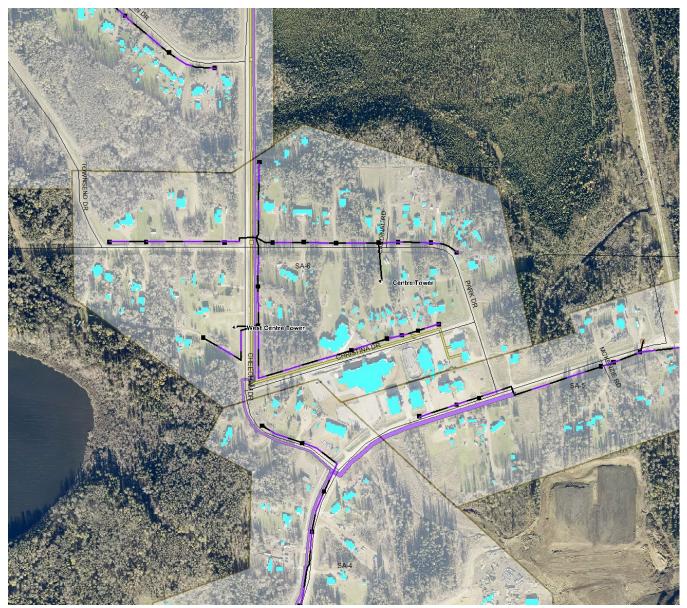


#### SA-9, 10, & 11






#### Anzac


### SA-1 & 2





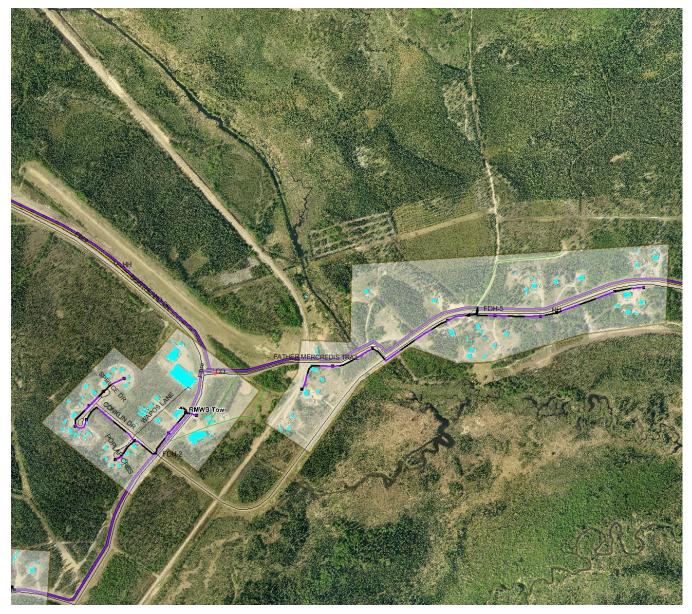
#### SA-4 & 5







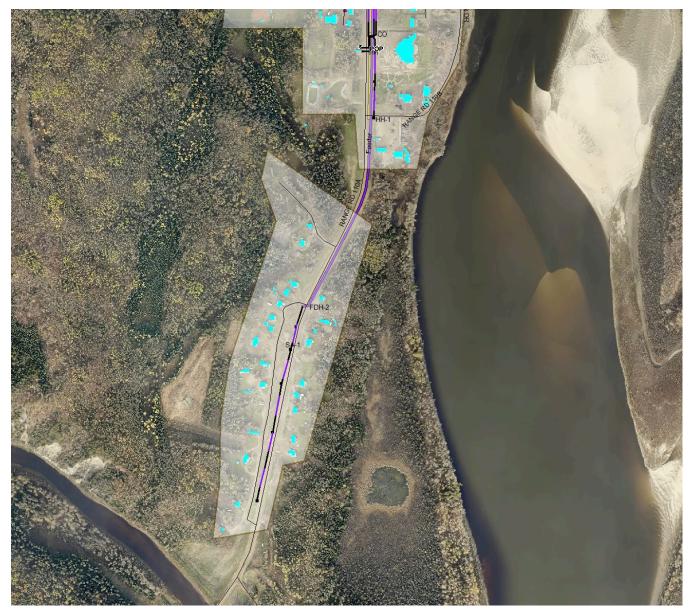
#### SA-8 & 9




## Conklin

## SA-1, 2, & 3








#### SA-6 & 7



## Fort MacKay



#### SA-2, 3, & 4



#### SA-5 & 6



## Gregoire Lake Estates

SA-1, 2, & 3

